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I. The Coronavirus Impact Dashboard 

The Coronavirus Impact Dashboard has been created by the IDB and IDB Invest to track in real 

time the impact of the coronavirus disease 2019 (also known as COVID-19) on the countries of 

Latin America and the Caribbean. The dashboard aims to track a range of variables of interest in 

order to provide policymakers, epidemiologists, and the general public in the region with 

measures of the impact that “social distancing” restrictions and recommendations due to the 

coronavirus outbreak are having on the population and on economic activity.1 

 

Currently the dashboard provides measures of the impact on traffic congestion,  public transport 

use, human mobility, air quality and daily statistics on COVID-19 cases at the country level or 

disaggregated levels when available Depending on the data source, data provided in the 

dashboard will be continuously updated (daily or weekly) in order to track real-time impact.  

 

This Methodological Note will also continuously track and update methodological changes (when 

necessary) and changes/additions to data sources.2 The version of the Methodological Note and 

its date of creation are shown at the top of the document.3 

 

 

  

 
1 To cite the IDB and IDB Invest Coronavirus Impact Dashboard, please use the following reference: Inter-American 
Development Bank and IDB Invest. "IDB and IDB Invest Coronavirus Impact Dashboard". 2020. Inter-American 
Development Bank.www.iadb.org/coronavirus-impact-dashboard  

2 To cite this Methodological Note, please use the following reference: Inter-American Development Bank and IDB 
Invest. IDB And IDB Invest Coronavirus Impact Dashboard Methodological Note. Washington, DC: Inter-American 
Development Bank, 2020. https://iadb-comms.org/IDB-IDBInvest-coronavirus-impact-dashboard-methodological-note. 

3 Copyright © 2020 Inter-American Development Bank.  
This work is licensed under a Creative Commons IGO 3.0 Attribution-NonCommercial-NoDerivatives (CC-IGO BY-NC-
ND 3.0 IGO) license (https://creativecommons.org/licenses/by-nc-nd/3.0/igo/legalcode) and may be reproduced with 
attribution to the IDB and for any non-commercial purpose. No derivative work is allowed. Any dispute related to the 
use of the works of the IDB that cannot be settled amicably shall be submitted to arbitration pursuant to the UNCITRAL 
rules. The use of the IDB’s name for any purpose other than for attribution, and the use of IDB’s logo shall be subject 
to a separate written license agreement between the IDB and the user and is not authorized as part of this CC-IGO 
license. Note that link provided above includes additional terms and conditions of the license. The opinions expressed 
in this publication are those of the authors and do not necessarily reflect the views of the Inter-American Development 
Bank, its Board of Directors, or the countries they represent. 

http://www.iadb.org/coronavirus-impact-dashboard
https://iadb-comms.org/IDB-IDBInvest-coronavirus-impact-dashboard-methodological-note
https://creativecommons.org/licenses/by-nc-nd/3.0/igo/legalcode
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II. Changelog 

• Version 2.0 Changes 

1. Methodological changes in Traffic Congestion Intensity (TCI) calculation (see Section IV): 

a. Changed baseline dates from March 1-7, 2020 to March 2-8, 2020. 

b. Changed data in TCI calculation from using jams that appeared only once if there was 

no change in delay/length, to all jams being counted once in each 5-minute period. 

c. Dropped from TCI calculation jams associated to closed streets. 

d. Changed rules for reporting a particular region in the Dashboard, from being based on 

the relationship between TCI and population, to a rule based on i) historical variability; 

ii) historical TCI relationship with Open Street Map road network length. 

e. Added reporting of weekly TCI measure to the Dashboard. 

2. Added tabs in Dashboard for Human Mobility and Air Quality. 

3. Expanded and modified reporting of  public transport data: i) report more detailed Moovit data; 

ii) changed public transport baseline week to be March 2-8, 2020, iii) added public transport 

data for Bogotá and São Paulo. 

 

 

III. Data sources 

• COVID-19 cases and deaths 

The data on COVID-19 cases and deaths is compiled by the Center for Systems and Science 

Engineering (CSSE) at John Hopkins University. Their information comes from several different 

sources, which might differ in terms of reliability. We take this data on an “as-is” basis, as provided 

by the CSSE.  The original data can be found here. 

 

• Traffic congestion data 

The IDB Group has an agreement with Waze through the Waze for Cities Program. The 

agreement provides us with access to aggregate-level information originating from a continuous 

feed every two minutes from the Waze community-driven navigation app. This feed provides 

information on traffic jams and user alerts. (See below for details on the traffic measures created 

from these data.) 

 

• Public transport data 

We rely on different data sources to measure public transport use: 

1. Bogotá BRT and bus system: We use data on validations (i.e., ticked card swipes at BRT 

stations) for Transmilenio and the SITP-Buses (i.e., ticket card swipes when boarding the 

Bus). We obtain the data from Transmilenio’s open data website. We report the percentage 

change in validations, compared to the validations in the week of March 2-8, 2020.  

2. Lima BRT: We use data on daily validations (i.e., ticket card swipes at stations) for the 

Metropolitano, a bus line in Lima, Peru. We obtain the data from the Instituto Metropolitano 

PROTRANSPORTE de Lima of the Municipality of Lima. We report the percentage change in 

validations, compared to the validations in the week of March 2-8, 2020. 

3. São Paulo Bus System: We use data on daily validations (i.e., ticket card swipes and single 

cash paid tickets in the buses) for the São Paulo Bus System. We obtain the data from the 

Secretaria Municipal de Mobilidade e Transportes of the Municipality of São Paulo. We report 

https://systems.jhu.edu/
https://systems.jhu.edu/
https://www.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6
https://www.waze.com/ccp
https://datosabiertos-transmilenio.hub.arcgis.com/
http://www.protransporte.gob.pe/datos-abiertos/
http://www.protransporte.gob.pe/datos-abiertos/
https://www.prefeitura.sp.gov.br/cidade/secretarias/transportes/institucional/sptrans/acesso_a_informacao/agenda/index.php?p=292723
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the percentage change in validations compared to the validations in the week of January 15, 

2020. We present the results for both total validations and validations classified by the city as 

free rides (it includes, among others, validations of people over 60 years old and people with 

disabilities; it does not include students). 

4. Moovit: The public transport app Moovit generates the Moovit Public Transit Index for almost 

100 cities across the world. We report the overall percentage change in public transport use 

as a result of the coronavirus crisis for the cities in Latin America and the Caribbean for which 

Moovit reports the index. We re-calculate Moovit’s index so that the percentage changes 

reported are compared to the week of March 2-8, 2020. 

 

• Human mobility data 

In the Dashboard we present summary measures from the Human Mobility Map which is based 

on data from Veraset. The Human Mobility Map  is generated by the IDB in an effort coordinated 

by the Research Department. For methodological details see here. And for more information 

about this initiative see this blog. 

 

•  Air quality data 

The air quality measures are based on modified Copernicus Sentinel data. Launched in 2017 by 

the European Space Agency (ESA), Copernicus Sentinel 5P monitors the density of several 

atmospheric gases, aerosols, and cloud distributions affecting air quality and climate. The 

measurements are made by an instrument called TROPOspheric Monitoring Instrument 

(TROPOMI). TROPOMI measures a wide range of atmospheric trace gases such as nitrogen 

dioxide (NO2), ozone (O3), sulphur dioxide (SO2), methane (CH4), and carbon monoxide (CO). 

The data can be found on the Copernicus open access hub. 

 

 

IV. Methodology 

• Traffic congestion  

1. Interpreting Waze data 

a. Waze data on traffic jams are passively generated while the Waze app is running on a 

user’s device (i.e., even if the user is not actively using it).  

b. Combining that information for all Waze users (“Wazers”) in the area, Waze identifies 

whether at any given geographic point traffic is slowing down (with respect to the expected 

speed under no-jam conditions, or “free-flow").  

c. It must be noted that a “no congestion scenario” does not necessarily imply that there is 

no traffic on a specific road. This is because while congestion is obviously correlated with 

the volume of vehicles, the relationship between speed and volume is not linear (see 

Highway Capacity Manual, Level of Service). Even when congestion is reduced to zero 

there may still be vehicles driving on the road. The Waze data do not allow saying anything 

about the volume of vehicles on the road under a no-congestion scenario. An extreme 

example can illustrate this point: if there were only autonomous and connected vehicles 

on a given road, at a volume consistent with the road specifications, traffic congestion 

would be zero, but the number of vehicles could still be significant. In a more realistic 

https://company.moovit.com/
https://moovitapp.com/insights/en/Moovit_Insights_Public_Transit_Index-countries
https://www.iadb.org/en/research-and-data/mobility-covid
https://veraset.com/
http://idbdocs.iadb.org/wsdocs/getdocument.aspx?docnum=EZSHARE-1993837609-143
http://www.iadb.org/document.cfm?id=EZSHARE-1993837609-142
https://blogs.iadb.org/ideas-que-cuentan/es/el-mapa-de-movilidad-de-las-personas-muestra-que-paises-acatan-mas-el-distanciamiento-social/
https://scihub.copernicus.eu/
http://www.trb.org/Main/Blurbs/Highway_Capacity_Manual_2010_HCM2010_164718.aspx


4 
 

scenario (we do not have many autonomous vehicles roaming the streets yet), one would 

expect traffic congestion to be highly correlated with vehicle volume (traffic) at high volume 

levels, but once traffic is “free-flowing”, Waze data (and the traffic congestion measure 

presented below) would not be able to capture it. 

d. From the information generated by the app’s use Waze creates “jam lines” that indicate 

continuous portions of streets where speed has slowed. Waze data provides the exact 

geographic location, length, speed, and time delay for these jam lines compared to the 

time it would normally take to transverse the jam line by car. A categorization for the 

severity of the jam is also provided.  

e. Thus, the jam data is composed of jam lines (which can change over time) measured at 

different time intervals. Given the crowd-sourced nature of the data, it cannot be 

determined if fluctuations in jam line activity are due to actual changes in traffic conditions 

or due to fluctuations in the number of active Wazers. Evidence from on-the-ground 

measures supports the notion that changes in jam activity are generally due to actual 

changes in traffic conditions. 

f. As explained below, if we either do not observe enough historical Waze data activity for 

some areas, or we observe high variability in the historical data, those areas are excluded 

from our reporting. 

 

2. Identification of geographic areas. We query two types of areas (defined here as polygons): 

a. Countries: We query all 26 IDB borrowing member countries: Argentina, The Bahamas, 

Barbados, Belize, Bolivia, Brazil, Chile, Colombia, Costa Rica, Dominican Republic, 

Ecuador, El Salvador, Guatemala, Guyana, Haiti, Honduras, Jamaica, Mexico, Nicaragua, 

Panama, Paraguay, Peru, Suriname, Trinidad and Tobago, Uruguay, and Venezuela. The 

boundaries for each country are those used by OpenStreetMap. 

b. Metropolitan areas: It is very difficult to compare cities across countries, given that national 

definitions of cities tend not to be consistent across countries and rely on administrative, 

legal, or historical boundaries that may not necessarily reflect the functional and economic 

extent of cities (Dijkstra and Poelman 2012).4 We use a consistent definition of 

metropolitan areas across countries that, instead of relying on administrative or legal 

country-specific definitions, is based on the following strategy:  

i. Following Dijkstra and Poelman (2012), we define an urban center as a human 

settlement with high population density and infrastructure of built environment 

created through urbanization processes.  

ii. Applying the methodology used by those authors requires having estimates of total 

population for Latin America and the Caribbean at 1 km2 spatial resolution. To do 

this, we utilize data from the WorldPop database for 2020.5  

 
4 L. Dijkstra and H. Poelman (2012) “Cities in Europe: The New OECD-EC Definition.” Regional Focus 1/2012, 
European Commission. Available at: https://ec.europa.eu/regional_policy/sources/docgener/focus/2012_01_city.pdf. 

5 F.R. Stevens, A.E. Gaughan, C. Linard, and A.J. Tatem (2015) “Disaggregating Census Data for Population Mapping 
Using Random Forests with Remotely-sensed and Ancillary Data.” PloS one 10(2). Available at: 
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0107042  

https://www.iadb.org/en/about-us/borrowing-member-countries
https://wambachers-osm.website/boundaries/
https://www.worldpop.org/geodata/summary?id=141
https://ec.europa.eu/regional_policy/sources/docgener/focus/2012_01_city.pdf
about:blank
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iii. We then use these gridded datasets as raster files to create urban centers as 

clusters of adjacent grids/pixels with over 1,500 inhabitants and with over 100,000 

inhabitants, adapting the steps in Dijkstra and Poelman (2012).6  

iv. Our initial list of clusters with over 100,000 inhabitants and country capitals has 

292 candidate locations, which we then restrict to those urban centers with over 

750,000 inhabitants, plus any country capital among the IDB member countries 

that does not have more than 750,000 inhabitants.  

v. Once we apply the steps above and restrict the sample to urban centers with more 

than 750,000 inhabitants and country capitals, we arrive at a list of 78 metropolitan 

areas. 

vi. We finally restrict the analysis to areas with enough Waze activity data and not too 

much variability historically (see details below), which implies that 19 countries and 

64 metropolitan areas are included in the dashboard. As we report both daily and 

weekly measures, the restrictions are applied independently at each level of 

reporting. Tables 1 and 2 present the full list of metropolitan areas included in the 

dashboard for daily and weekly measures, respectively.  

c. We calculate a (proxy) measure for traffic congestion using Waze data in each of the 

polygons at five- minute intervals (see below). 

 

3. Traffic Congestion Intensity (TCI) 

a. At every time interval 𝑖 at which the data is analyzed and for every polygon, 𝑝, we calculate 

a measure of total jam length, 𝐿𝑖𝑝, by adding the lengths of all jam lines7 𝑗 in the polygon 

in that time interval: 

𝐽𝐴𝑀𝑖𝑝 = ∑ 𝐿𝑗𝑖𝑝. 

b. The measure for a period 𝑡 (in Version 2.0 defined as a full day8) adds up all the total jam 

lengths across all intervals in the period 𝑡:  

𝑇𝐶𝐼𝑝𝑡 = ∑ 𝐽𝐴𝑀𝑖𝑝,. 

c. This measure of TCI summarizes both the extent of jams in the street network of a polygon 

(e.g., a metro area) and their duration, because jam lengths are counted at each time 

interval 𝑖. For example, if in metropolitan area A and metropolitan area B the same 10 jam 

lines are formed in a day, each 150 meters long, we would have a measure of 1,500 

 
6 Dijkstra and Poelman (2012) define urban centers as contiguous (Rook contiguity) grid cells of 1 km2 with a density 
of at least 1,500 inhabitants per km2 and a minimum population of 50,000. Adapting their methodology, we apply the 
following steps. First, all cells with a population density of more than 1,500 inhabitants per km2 are selected. Second, 
contiguous high-density cells are grouped. Third, to fill gaps and smooth sharp borders, the majority rule is applied 
iteratively. This means that if five or more of the cells surrounding a cell belong to a single high-density cluster, it is 
added to that high-density cluster. This is repeated until no more cells are added. Finally, we identify the single high-
density cluster with a metropolitan area name using the latitude and longitude of the mayor’s office or a major reference 
point of the city. 

7 We exclude from the analysis jam lines with a value of traffic congestion level in the Waze data equal to 5 (blocked) 
which refers to streets that are closed to traffic. 

8 Other calculations could involve partial days, such as traffic during the day versus traffic at night, or traffic during rush 
hours. Future versions of the dashboard will explore these possibilities. 

https://www.naturalearthdata.com/downloads/10m-cultural-vectors/10m-populated-places/
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meters jammed in both A and B during the day. However, if jams in A have a duration that 

is double the duration in B, the TCI for A would be double the TCI for B. 

 

4. Baseline period 

a. The TCI is not particularly useful as a point-in-time measure, but it is useful to capture 

changes in jam intensity over time for a fixed-size polygon.  

b. In response to a mandatory lockdown or other restrictions and/or recommendations for 

“social distancing,” we expect the TCI to decrease. As mentioned above, even if the TCI 

drops to zero (meaning there is no more congestion) it does not provide data on the 

remaining volume of vehicles on the roads (which must be circulating at “free-flow” speed, 

given there is no congestion). Hence the interpretation of TCI changes should be taken 

with caution, when trying to assess the impacts of government measures or 

recommendations. 

c. To calculate percentage changes, we need to select a reference point or baseline period 

against which to compare the TCI after the coronavirus outbreak. 

d. One option would be to consider the same weeks (to account for seasonality in traffic 

patterns) in the prior year (2019). However, we decided against this option in order to 

avoid potential confounding effects related to changes in Waze app penetration and 

Wazers’ engagement, and/or related to metropolitan-area-wide or country-wide secular 

trends (e.g., changes in the macroeconomic context), which can affect traffic patterns. 

e. We also decided against using traffic data for January and February 2020 given the 

idiosyncratic characteristics of these months. For example, travel patterns and traffic 

during summer vacations and/or carnival during these two months in many countries in 

Latin America and the Caribbean are very different than the business-as-usual scenario. 

f. Therefore, the baseline period considered is the first week of March 2020 (March 2–8, 

2020), as this was a week when traffic patterns were not expected to have been affected 

by holidays, and given that either no COVID-19 cases or a very small number of cases 

had materialized in the region up to that time. In addition, no restrictions or 

recommendations had been issued to the population. (See Table 3 for details on the timing 

of coronavirus milestones in Latin America and the Caribbean.) 

 

5. Day-of-the-Week effects 

a. The data shows there are systematic differences in TCI patterns across the days of the 

week (see Figure 1).  

b. To control for these systematic differences, we use only day-of-the-week pairs when we 

calculate TCI changes. That is, all Mondays are compared to a baseline Monday, all 

Tuesdays to a Baseline Tuesday, etc. 

 

6. Change in Traffic Congestion Intensity (TCI) 

a. We evaluate changes in the TCI in polygon 𝑝 in period 𝑡 by simply calculating the 

percentage change in the TCI with respect to the corresponding day-of the-week baseline 

period: 

ΔTCI𝑝𝑑𝑡1
= (

𝑇𝐶𝐼𝑝𝑑𝑡1

𝑇𝐶𝐼𝑝𝑑𝑡0

− 1) × 100,  
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where:  

𝑇𝐶𝐼 = Traffic Congestion Intensity 

𝑝= Polygon (metropolitan area or country) 

𝑑= Day of the week 

𝑡1= Evaluation period 

𝑡0= Baseline period 

 

7. Metropolitan areas and countries reported  

a. For some metropolitan areas (and countries) the historical data shows that either there is 

not enough Waze daily activity and/or there is too much variability, for us to deem the TCI 

measure to be a reliable measure of traffic congestion changes in that area. We do not 

report TCI changes in these areas, as shown in Tables 1 and 2, for daily and weekly 

analyses, respectively. 

b. We apply two criteria (both need to be satisfied) for a polygon to be included in our analysis 

(independently at the daily and the weekly level):  

i. Historical variability. Using data for 2019, we obtain (both at daily and weekly 

levels) the average and standard deviation of the TCI. We then calculate the 

coefficient of variation (standard deviation/average) of the daily and weekly TCI. 

We only consider in the analysis those polygons (metro area, country) with a 

coefficient of variation < 0.5. 

ii. Historical Waze data activity. Using data for 2019, we obtain the daily average of 

the TCI for the polygon (for the weekly data we also express it as a daily average 

dividing it by 7) and take the ratio of this average to the length of the road network 

in the same polygon, according to Open Street Map. (We only  consider Roads in 

the Open Street Map classification.) We only include in our analysis those 

polygons with a ratio TCI/OSM length > 0.10. 

 

8. Country-level TCI 

a. As we obtain country-level values of the TCI from country-wide queries, this implies that 

for different countries the metropolitan areas within those countries for which we present 

information may explain a larger or smaller share of the overall country TCI. Thus, an 

average of the metropolitan area indexes could potentially diverge from the country-wide 

index. Tables 1 and 2 present data on the share of the country’s TCI explained by each 

metropolitan area within a country, on average, during 2019. 

b. Conceptually, a (potentially weighted) average of metropolitan-area-level TCI is different 

from the country-wide measure because with any fixed-weight scheme for obtaining the 

average, changes over time in the relative importance of the TCI in a metropolitan area 

(compared to the other metropolitan areas in the country) are not captured. For this 

reason, and due to its simplicity of calculation, we opt for calculating country-level 

measures using full country polygon queries. 
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• Air Quality 

1. Nitrogen dioxide 

a. Nitrogen dioxide (NO2) is a gaseous air pollutant and is one of a group of related gases 

called nitrogen oxides, or NOx. This is a pollutant that has a direct connection to fossil 

fuel emissions. Most airborne NO2,  comes from high temperature combustion of emission 

sources of human origin such as coal, oil, gas or diesel. The largest source of nitrogen 

dioxide emissions are cars, trucks, and buses, followed by power plants, diesel-powered 

heavy construction equipment and other movable engines.  

b. According to health departments the main effect of breathing in high levels of nitrogen 

dioxide is the increased likelihood of respiratory problems. Nitrogen dioxide 

inflames the lining of the lungs, and it can reduce immunity to lung infections. This 

can cause problems such as wheezing, coughing, colds, flu and bronchitis. 

Increased levels of nitrogen dioxide can have significant impacts on people with 

asthma because it can cause more frequent and more intense attacks. Children 

with asthma and older people with heart disease are most at risk. All these can lead 

to increases in morbidity and mortality. 

c. Since NO2 is created when burning fossil fuels, it is directly correlated to changes in human 

activity. Montgomery and Holloway (2018) find a positive relationship between the 

increase in gross urban product and NO2 vertical column densities from NASA’s Aura 

satellite.9 Moreover, reductions in NO2 levels have been correlated not only with higher 

enforcement of environmental standards but also with lower economic activity from an 

economic recession as in Castellanos and Boersma (2012).10 

d. So, we follow NO2 concentrations during the coronavirus outbreak in order to track not 

only the extent to which “social distancing” restrictions are having an impact on one of the 

pollutants that contribute to lower air quality, but also as a possible proxy for changes in 

economic activity.  

 

2. Satellite derived NO2 

a. Satellite observations of NO2 tropospheric columns are useful for observing trends in NO2 

concentrations and inferring surface emissions on regional scales. Satellite observations 

cover regional areas and provide consistent time series of NO2 concentrations.  

b. We present trends in NO2 concentrations over LAC cities measured with the 

TROPOspheric Monitoring Instrument (TROPOMI) starting in March 2020. We use the 

tropospheric vertical column density observed under “cloud free” conditions and over a 

high-quality assurance value of 0.75.  

c. The raster images show nitrogen dioxide concentrations and we use measures at 10-day 

periods since concentrations vary from day to day due to changes in weather conditions. 

By combining data for 10 days we average out the meteorological variability so we can 

 
9 Montgomery, A. and T. Holloway (2018). Assessing the relationship between satellite-derived NO2 and economic 

growth over the 100 most populous global cities, J. Appl. Rem.Sens.,12(4), https://doi.org/10.1117/1.JRS.12.042607.  

10 Castellanos, P. and Boersma (2012). Reductions in nitrogen oxides over Europe driven by environmental policy and 

economic recession. Sci Rep 2, 265. https://doi.org/10.1038/srep00265.  

http://www.tropomi.eu/
https://doi.org/10.1117/1.JRS.12.042607
https://doi.org/10.1038/srep00265
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see the impact of changes due to human activity. We focus on 10-day periods compared 

to March 1-10, 2020, a similar baseline used in the TCI analysis.  

  

3. Metropolitan areas and methodology 

a. We processed satellite data for all LAC cities but we present a sample of cities in the 

region with varying degrees of lockdown measures in place during the 3rd week of 

March. We chose Buenos Aires, Bogotá, Medellín, Quito, Guayaquil and Lima for 

countries with a total lockdown policy and compared them with Sao Paulo, Rio de 

Janeiro, Santiago de Chile, Ciudad de México and Kingston. The last set of cities did 

not have total lockdowns in place but rather some partial social distancing measures.  

b. We present the maps for each city-period, with each pixel having a size of 3.3x3.3 

kilometers near the equator. Since the TROPOMI instrument has a spatial resolution 

of 3.5x7 km2 we interpolated the data for each day using a weighted inverse distance 

methodology with up to 6 neighbors searching for computational ease. 

c. The bar graph showing the percent change in NO2  concentrations was created by 

weight averaging the value of each pixel by the total amount of population in 2020 

according to the WorldPop data, and up to 30 kms away from the city center. We then 

created a simple percent change of the values before and after for each city. 

 

 

V. Code 

In an effort to help researchers replicate and expand analysis, when applicable all code used is 

available in the IDB’s Code for Development GitHub repository under Coronavirus Dashboard. 

This repository reflects the code being used in the most current version of the dashboard. 

 

 

VI. Team 

• Development Effectiveness Division Chiefs 

IDB: Carola Alvarez 
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IDB: Oscar Mitnik  
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• Technical Team 

IDB Development Effectiveness: João Carabetta, Maria Paula Gerardino, Daniel Martinez, 

Edgar Salgado, Beatrice Zimmermann 

IDB Invest Development Effectiveness: Mattia Chiapello, Luciano Sanguino 

IDB Transport: Julieta Abad, Carlos Mojica, Alejandro Taddia 

• Communications Team 

IDB: Lina Botero, David Einhorn, Andrés Gómez-Peña, Gador Manzano 

IDB Invest: Gabriela Herrera, Norah Sullivan 

• IT Team 

IDB: eBFactory  

IDB Invest: Maiquel Sampaio de Melo  

https://www.worldpop.org/geodata/summary?id=141
https://github.com/EL-BID
https://github.com/EL-BID/IDB-IDB-Invest-Coronavirus-Impact-Dashboard
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Figures and Tables 

 

Figure 1. Baseline Period Traffic Congestion Intensity by Day of the Week, Selected 

Cities 

 

 
 

Note: Traffic congestion intensity is measured in thousands of kilometers. 

 

  



11 
 

Table 1.  Daily Measures Used to Select Countries and Areas Reported (2019) 

Country CV  
TCI/ 
OSM 
Ratio  

Metropolitan area CV  
TCI/ 
OSM 
Ratio 

Share 
TCI 
(%) 

 Argentina 0.28 0.26 

Buenos Aires 0.33 2.67 41.11 
Córdoba 0.36 1.07 2.74 
Mendoza* 0.51* 0.41 0.64 
Rosario 0.34 0.46 0.77 

 Bahamas* 0.45 0.04* New Providence* 0.60* 0.07* 25.79 

 Barbados 0.43 0.18 Bridgetown* 0.65* 0.24 69.11 

 Belize* 0.66* 0.05* Belmopan* 1.91* 0.01* 0.29 

 Bolivia* 0.32 0.03* 
Cochabamba* 0.39 0.02* 1.07 
La Paz* 0.38 0.05* 2.73 
Santa Cruz de la Sierra 0.38 0.71 70.95 

 Brasil 0.29 0.58 

Belo Horizonte 0.37 3.60 2.41 
Belém 0.33 4.34 1.05 
Brasília 0.34 1.96 0.95 
Campinas 0.41 1.52 0.80 
Curitiba 0.40 3.23 1.66 
Fortaleza* - - - 
Goiânia 0.38 1.60 0.92 
João Pessoa 0.37 2.01 0.42 
Maceió 0.35 4.24 0.62 
Manaus 0.36 4.30 1.11 
Natal 0.32 3.55 1.68 
Porto Alegre 0.40 3.21 1.87 
Recife 0.32 4.63 2.15 
Rio de Janeiro 0.35 4.79 5.79 
Salvador 0.40 5.75 1.67 
Santos 0.35 3.91 0.81 
São José dos Campos 0.34 1.99 0.33 
São Luís 0.36 2.52 0.65 
São Paulo 0.38 5.84 13.18 
Teresina 0.36 1.82 0.43 
Vitória 0.38 2.30 0.72 

 Chile 0.23 1.04 Santiago 0.46 4.74 31.40 

 Colombia 0.22 1.61 

Barranquilla 0.32 4.48 3.82 
Bogotá 0.29 12.98 35.55 
Bucaramanga 0.35 2.23 1.21 
Cali 0.33 4.92 5.21 
Cartagena de Indias 0.28 3.62 1.51 
Cúcuta 0.37 0.42 0.25 
Medellín 0.35 6.40 7.61 
Pereira 0.36 4.12 1.26 

 Costa Rica 0.21 2.00 San José 0.35 7.02 36.92 

 Ecuador 0.25 0.39 
Guayaquil 0.37 1.92 22.06 
Quito 0.33 4.23 53.67 

 El Salvador 0.35 1.13 San Salvador 0.40 6.04 54.90 

 Guatemala 0.26 1.10 Ciudad de Guatemala 0.33 6.11 60.67 

 Guyana* 0.84* 0.01* Georgetown* 0.66* 0.06* 38.10 

 Haiti* 0.84* 0.02* Port-au-Prince* 0.63* 0.07* 40.89 

 Honduras 0.31 0.21 Tegucigalpa 0.47 1.00 25.40 

 Jamaica 0.25 0.12 Kingston 0.49 0.40 25.86 
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 México 0.31 0.84 

Aguascalientes 0.35 1.34 0.49 
Ciudad de México 0.29 5.23 24.51 
Guadalajara 0.28 3.67 4.96 
Juárez* 0.54* 1.13 0.76 
León 0.36 1.74 0.90 
Monterrey 0.38 2.32 3.57 
Mérida 0.32 1.36 0.72 
Puebla 0.25 2.35 2.07 
Querétaro 0.31 2.81 1.33 
San Luis Potosí 0.40 2.14 0.85 
Tijuana* 0.54* 2.61 1.55 
Toluca 0.31 2.64 1.90 
Torreón 0.49 0.70 0.37 

 Nicaragua 0.27 0.29 Managua 0.36 1.08 32.31 

 Panama 0.27 1.62 Ciudad de Panamá 0.43 8.04 57.09 

 Paraguay 0.45 0.12 Asuncion* 0.50* 1.46 79.66 

 Peru 0.20 0.52 
Arequipa 0.33 2.02 3.18 
Lima 0.24 4.81 65.09 

 República Dominicana 0.30 1.15 
Santiago de los Caballeros 0.35 2.77 13.43 
Santo Domingo 0.36 4.75 73.26 

 Suriname* 0.47 0.08* Paramaribo* 0.51* 0.29 75.19 

 Trinidad and Tobago 0.44 1.58 
Port of Spain* 0.58* 4.96 30.70 
San Fernando* 0.58* 2.64 15.06 

 Uruguay 0.32 0.52 Montevideo 0.20 4.32 65.69 

 Venezuela* 0.60* 0.04* 

Barquisimeto* 5.00* 0.03* 1.19 
Caracas* 0.76* 1.33 76.57 
Maracaibo* 0.82* 0.00* 0.23 
Maracay* 0.73* 0.05* 2.49 
Valencia* 0.77* 0.06* 3.50 

Notes:  

i. CV refers to coefficient of variation; TCI/OSM ratio refers to the average ratio of the daily TCI 

to the Open Street Map road network length; Share TCI refers to the average share of the 

daily TCI of a metropolitan area to the country’s TCI. All measures use 2019 Waze data. 

ii. Sum of TCI shares within a country may not add up to 100 percent, as country-level traffic 

congestion intensity is based on data for the whole country.  

iii. * Indicates countries and areas not reported in the dashboard. Only countries and metropolitan 

areas with TCI CV < 0.50 and TCI/OSM ratio > 0.10 are reported. The * next to a number 

indicates the criterion that is binding. 
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Table 2. Weekly Measures Used to Select Countries and Areas Reported (2019) 

Country CV 
TCI/ 
OSM 
Ratio  

Metropolitan area CV 
TCI/ 
OSM 
Ratio 

Share 
TCI 
(%) 

 Argentina 0.26 0.26 

Buenos Aires 0.22 2.62 41.11 
Córdoba 0.35 1.05 2.74 
Mendoza 0.36 0.41 0.64 
Rosario 0.24 0.45 0.77 

 Bahamas* 0.32 0.04* New Providence* 0.36 0.06* 25.79 

 Barbados 0.26 0.18 Bridgetown 0.32 0.24 69.11 

 Belize* 0.51* 0.05* Belmopan* 0.68* 0.01* 0.30 

 Bolivia* 0.31 0.03* 
Cochabamba* 0.24 0.02* 1.07 
La Paz* 0.28 0.05* 2.73 
Santa Cruz de la Sierra 0.36 0.70 70.95 

 Brasil 0.22 0.58 

Belo Horizonte 0.24 3.54 2.37 
Belém 0.24 4.27 1.03 
Brasília 0.23 1.93 0.94 
Campinas 0.23 1.50 0.79 
Curitiba 0.24 3.18 1.63 
Fortaleza* - - - 
Goiânia 0.22 1.58 0.90 
João Pessoa 0.21 1.98 0.42 
Maceió 0.18 4.18 0.61 
Manaus 0.20 4.23 1.09 
Natal 0.21 3.49 1.65 
Porto Alegre 0.23 3.16 1.84 
Recife 0.19 4.55 2.12 
Rio de Janeiro 0.21 4.71 5.69 
Salvador 0.20 5.66 1.64 
Santos 0.27 3.85 0.80 
São José dos Campos 0.22 1.96 0.32 
São Luís 0.25 2.48 0.64 
São Paulo 0.23 5.74 12.96 
Teresina 0.25 1.79 0.42 
Vitória 0.20 2.26 0.71 

 Chile 0.15 1.03 Santiago 0.28 4.66 31.40 

 Colombia 0.19 1.58 

Barranquilla 0.19 4.41 3.82 
Bogotá 0.22 12.77 35.55 
Bucaramanga 0.25 2.19 1.21 
Cali 0.21 4.84 5.21 
Cartagena de Indias 0.21 3.56 1.51 
Cúcuta 0.30 0.42 0.25 
Medellín 0.24 6.30 7.61 
Pereira 0.29 4.06 1.26 

 Costa Rica 0.15 1.97 San José 0.24 6.91 36.92 

 Ecuador 0.18 0.38 
Guayaquil 0.22 1.89 22.06 
Quito 0.21 4.16 53.67 

 El Salvador 0.31 1.11 San Salvador 0.24 5.94 54.90 

 Guatemala 0.20 1.08 Ciudad de Guatemala 0.22 6.01 60.67 

 Guyana* 0.43 0.01* Georgetown* 0.37 0.05* 38.10 

 Haiti* 0.65* 0.02* Port-au-Prince* 0.55* 0.07* 40.89 

 Honduras 0.26 0.20 Tegucigalpa 0.34 0.98 25.40 

 Jamaica 0.18 0.12 Kingston 0.27 0.40 25.86 
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 México 0.27 0.84 

Aguascalientes 0.29 1.32 0.48 
Ciudad de México 0.20 5.14 24.11 
Guadalajara 0.21 3.61 4.87 
Juárez* 0.51* 1.12 0.75 
León 0.26 1.71 0.88 
Monterrey 0.25 2.28 3.52 
Mérida 0.22 1.34 0.70 
Puebla 0.19 2.31 2.04 
Querétaro 0.21 2.77 1.31 
San Luis Potosí 0.29 2.10 0.84 
Tijuana* 0.51* 2.57 1.52 
Toluca 0.22 2.60 1.87 
Torreón 0.44 0.69 0.37 

 Nicaragua 0.24 0.29 Managua 0.23 1.06 32.31 

 Panama 0.17 1.59 Ciudad de Panamá 0.20 7.91 57.09 

 Paraguay 0.40 0.12 Asuncion 0.42 1.43 79.66 

 Peru 
0.17 0.51 Arequipa 0.23 1.99 3.18 
0.17 0.51 Lima 0.16 4.73 65.09 

 República Dominicana 0.21 1.14 
Santiago de los Caballeros 0.20 2.72 13.43 
Santo Domingo 0.23 4.68 73.26 

 Suriname* 0.35 0.08* Paramaribo 0.44 0.29 75.19 

 Trinidad and Tobago 0.26 1.55 
Port of Spain 0.29 4.88 30.70 
San Fernando 0.31 2.59 15.06 

 Uruguay 0.30 0.51 Montevideo 0.21 4.25 65.69 

 Venezuela* 0.45 0.04* 

Barquisimeto* 2.08* 0.03* 1.19 
Caracas* 0.58* 1.31 76.57 
Maracaibo* 0.49 0.00* 0.23 
Maracay* 0.46 0.05* 2.49 
Valencia* 0.44 0.06* 3.50 

Notes:  

i. CV refers to coefficient of variation; TCI/OSM ratio refers to the average ratio of the weekly 

TCI (divided by 7) to the Open Street Map road network length; Share TCI refers to the 

average share of the weekly TCI of a metropolitan area to the country’s TCI. All measures 

use 2019 Waze data. 

ii. Sum of TCI shares within a country may not add up to 100 percent, as country-level traffic 

congestion intensity is based on data for the whole country.  

iii. * Indicates countries and areas not reported in the dashboard. Only countries and metropolitan 

areas with TCI CV < 0.50 and TCI/OSM ratio > 0.10 are reported. The * next to a number 

indicates the criterion that is binding. 
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Table 3. Timing of Coronavirus Detection and Social Distancing Measures Adopted in 

Latin American and the Caribbean 

 

Country 
Date of Total 

Lockdown 

Date of First 

Social Distancing 

Measures 

Current Type of 

Lockdown 

Date of 

First 

Confirmed 

COVID-19 

Case 

Argentina 20-Mar 14-Mar Total 3-Mar 

Bahamas, 

The 
24-Mar 19-Mar Total 16-Mar 

Barbados  16-Mar Partial 17-Mar 

Belize  20-Mar Partial 23-Mar 

Bolivia 22-Mar 12-Mar Total 11-Mar 

Brazil  19-Mar Partial 26-Feb 

Chile  15-Mar Partial 3-Mar 

Colombia 2-Mar 12-Mar Total 6-Mar 

Costa Rica  12-Mar Partial 6-Mar 

Dominican 

Republic 
 16-Mar Partial 1-Mar 

Ecuador 22--Mar 11-Mar Total 1-Mar 

El Salvador 21-Mar 11-Mar Total 19-Mar 

Guatemala  16-Mar Partial 14-Mar 

Guyana  16-Mar Partial 12-Mar 

Haiti  19-Mar Partial 11-Mar 

Honduras 20-Mar 12-Mar Total 11-Mar 

Jamaica  13-Mar Partial 11-Mar 

Mexico  20-Mar Partial 28-Feb 

Nicaragua   None 19-Mar 

Panama 25-Mar 16-Mar Total 10-Mar 

Paraguay 20-Mar 9-Mar Total 8-Mar 

Peru 16-Mar 15-Mar Total 6-Mar 

Suriname  14-Mar Partial 14-Mar 

Trinidad and 

Tobago 
 13-Mar Partial 12-Mar 

Uruguay  13-Mar Partial 14-Mar 

Venezuela 17-Mar 12-Mar Total 14-Mar 

 

Note: Information includes all measures announced as of April 27, 2020.  
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